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Abstract
Introduction: Optimal practice and feedback elements are essential requirements for maximal
motor recovery in patients with motor deficits due to central nervous system lesions.

Methods: A virtual environment (VE) was created that incorporates practice and feedback
elements necessary for maximal motor recovery. It permits varied and challenging practice in a
motivating environment that provides salient feedback.

Results: The VE gives the user knowledge of results feedback about motor behavior and
knowledge of performance feedback about the quality of pointing movements made in a virtual
elevator. Movement distances are related to length of body segments.

Conclusion: We describe an immersive and interactive experimental protocol developed in a
virtual reality environment using the CAREN system. The VE can be used as a training environment
for the upper limb in patients with motor impairments.

Background
Stroke, third leading cause of death in Western countries,
contributes significantly to disabilities and handicaps. Up
to 85% of patients have an initial arm sensorimotor dys-
function with impairments persisting for more than 3
months [1,2]. Several principals guide motor recovery. In
animal stroke models, experience-dependent plasticity is
driven through salient, repetitive and intensive practice
[3,4]. However, in humans, unguided practice of reaching
without feedback about movement patterns used, even if
enhanced or intensive, may reinforce compensatory
movement strategies instead of encouraging recovery of

pre-morbid movement patterns [5,6]. While desirable for
some patients with severe impairment and poor progno-
sis, for others, compensation may limit the potential for
recovery [7-10].

Levin and colleagues have shown that recovery of pre-
morbid movement patterns after repetitive reaching train-
ing is facilitated when either compensatory trunk move-
ments were restricted [11] or information about missing
motor elements was provided [6,12]. This suggests that
more salient, task-relevant feedback may result in greater
motor gains after stroke. Virtual reality (VR) technologies
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provide adaptable media to create environments for
assessment and training of arm motor deficits using
enhanced feedback [13]. This paper describes a virtual
environment (VE) that incorporates practice and feedback
elements necessary for maximal motor recovery. It intro-
duces: 1) originality and motivation to the task; 2) varied and
challenging practice of high-level motor control elements,
and 3) optimal, multimodal feedback about movement per-
formance and outcome.

Methods
A VE simulating elevator buttons was developed to prac-
tice pointing movement (Fig. 1). Target placement chal-
lenges individuals to reach into different workspace areas
and motivation is provided as feedback about motor per-
formance. Peripherals are connected to a PC (Dual Xeon
3.06 GHz, 2 GB RAM, 160 GB hard drive) running a
CAREN (Computer Assisted Rehabilitation Environment;
Motek BV) platform providing 'real-time' integration of
3D hand, arm and body position data with the VE. The
system includes a head-mounted display (HMD, Kaiser
XL50, resolution 1024 × 768, frequency 60 Hz), an
Optotrak Motion Capture System (Northern Digital), a
CyberGlove® (Immersion), and a dual-head Nvidia Qua-
tro FX3000 graphics card (70 Hz) providing high-speed
stereoscopic representation of the environment created on
SoftImage XSI.

The 3D visual scene displayed through the HMD pro-
motes a sense of presence in the VE [14]. To simulate ster-
eovision, two images of the same environment are
generated in each HMD camera position with an offset
corresponding to inter-ocular distance. The Optotrak sys-
tem tracks movement in the virtual space via infrared

emitting diodes (IREDs) placed on body segments.
Optotrak provides higher sampling rates and shorter
latencies for acquiring positional data compared to other
systems, e.g., electromagnetic. Longer latencies may be
associated with cybersickness. Head and hand position
are determined by tracking rigid bodies on the HMD and
CyberGlove respectively.

Presence is enhanced with the 22-sensor CyberGlove, per-
mitting the user to see a realistic reproduction of his/her
hand in the VE. Haptic feedback is not provided (i.e., force
feedback on button depression). Hand position from
Optotrak tracking is relayed to CyberGlove software,
which calculates palm and finger position/orientation.
Final fingertip position determines target acquisition with
accuracy adjusted to the participant's ability.

Experimental Setup
The system permits repetitive training of goal-directed
arm movements to improve arm motor function. In the
current setup, elevator buttons (targets), displayed in 2
rows of 3, 6 cm × 6 cm targets (Fig. 2), are arranged on a
virtual wall in the ipsilateral and contralateral arm work-
space requiring different combinations of arm joint move-
ments for successful pointing. Center-to-center distance
between adjacent targets is 26 cm (Fig. 2A). Targets are
displayed at a standardized distance equal to the partici-
pant's arm length (Fig. 2B) to facilitate collision detection.
Middle targets are aligned with the sternum, with the mid-
point between rows at shoulder height.

A global system axis is calibrated using a grid of physical
targets having the exact size and relative position as those
in the VE, with its origin at the center of the target grid
(Fig. 3). Extreme right and left target distances (1,4,3,6)
are corrected for arm's length by offsetting target depth
along the sagittal plane (Fig. 4) so that they can be reached
without trunk displacement.

Based on findings that improvement in movement time
of a reaching task occurred after 25–35 trials in patients
with mild-to-moderate hemiparesis [7], the initial train-
ing protocol includes 72 trials. This represents twice the
number needed for motor learning and is considered
intensive. Trials are equally and randomly distributed
across targets. Twelve trials per target are recorded, 3
blocks of 24 movements each, separated by rest periods.
Recording time and intertrial intervals are adjusted
according to subject ability. Task difficulty is progressed
by manipulating movement speed and precision require-
ments.

Feedback
Effects of different types of feedback on motor learning
can be studied. Feedback is provided as knowledge of

A subject performing the experiment (left) beside the virtual reality system (right)Figure 1
A subject performing the experiment (left) beside the virtual 
reality system (right).
Page 2 of 5
(page number not for citation purposes)



Journal of NeuroEngineering and Rehabilitation 2007, 4:20 http://www.jneuroengrehab.com/content/4/1/20
results (KR) and performance (KP). Movement speed and
precision (KR) and motor performance (joint movement
patterns, KP) auditory and visual feedback is provided to
enhance motor learning [6,12]. Subjects are verbally cued
to reach to a target as well as by a change in target color
(yellow, Fig. 5A,B). Subjects receive positive feedback

(KR) in the form of a 'ping' sound and change in target
color (green) when the movement is both within the stip-
ulated time and area. Negative feedback (buzzer sound) is
provided if the movement is not rapid or precise enough.
Finally, the subject receives KP in the form of a 'whoosh'
sound and red colored target if trunk displacement
exceeds an adjustable default value of 5 cm. According to
previous studies, non-disabled subjects use up to 1.7 ± 1.6
cm of trunk movement to reach similarly placed targets
[15].

Preliminary Results
We compared motor performance and movement pat-
terns made to the 6 targets between the VE and PE (Fig. 6)
in 15 patients with hemiparesis and 8 age-matched non-
disabled controls. Position data (x, y, z) from the finger,
arm and trunk were interpolated and filtered and trajecto-
ries were calculated. Kinematics measured were endpoint
velocity, pointing error and trajectory smoothness. Peak
endpoint velocity was determined from magnitude of the
tangential velocity obtained by differentiation of index
marker positional data. Endpoint error was calculated as
the root-mean-square error of endpoint position with
respect to the target. Trajectory smoothness was computed
as the curvature index defined as ratio of actual endpoint
path length to a straight line joining starting and end posi-
tions such that a straight line has an index of 1 and a sem-
icircle has an index of 1.57 [16].

Fig. 6 shows mean endpoint trajectories for one patient
with moderate hemiparesis (A) and one non-disabled
subject (B) reaching to the 3 lower targets in both environ-
ments. The non-disabled subject made movements twice
as fast as the patient. In both subjects, movement speed
was lower in the VE. Endpoint precision was comparable,
ranging from 257–356 mm in the PE and 275–370 mm in
the VE for the non-disabled subject and from 263–363

Compensation of target size along the sagittal direction tak-ing into account the arc of the armFigure 4
Compensation of target size along the sagittal direction tak-
ing into account the arc of the arm.
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mm in the PE and 275–379 mm in the VE for the patient.
Movements tended to be less precise and more curved in
VE compared to the PE (curvature index: non-disabled-PE:
1.02–1.03; VE: 1.04–1.05; patient-PE: 1.15–1.22; VE:
1.16–1.32). Results suggest some differences in move-
ments performance in a VE compared to a PE of similar
physical dimensions. From a usability standpoint, only 2
patients of those screened could not use the HMD. Of
those who participated, all reported that the VE was more
enjoyable and motivating than the PE and it encouraged
them to do more practice.

Conclusion
A VR system was developed to study effects of enhanced
feedback on motor learning and arm recovery in patients
with neurological dysfunction. Effects will be contrasted
with those from practice in similarly constructed PEs
using different types of feedback.
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